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NASA TT F-13, 613 

A SIMPLE ALGORITHM FOR ROTATING THE PLANE OF AN 
ORBIT I N  THE CENTRAL AND NONCENTRAL GRAVITATIONAL 

FIELD OF THE EARTH 

V. V. Veselovskiy 

ABSTRACT: The problem of the  repeated passage of a satel l i te  
over a given point on the  terrestrial surface i s  discussed. 
A simple algorithm is proposed f o r  ro ta t ing  the  plane of the  
osculating o r b i t  which is i n i t i a l l y  described as an example 
i n  the central  gravi ta t ional  f i e l d  of t he  ear th  and then ex- 
tended t o  t h e  noncentral f ield,  which is taken in to  account 
with an accuracy up t o  the  first harmonic. 

ing on and switching o f f  of propulsion and the accuracy of 
t h e  th rus t  cut-off i s  checked f o r  t he  s i z e  of the m i s s  during 
repeated passag9 of th? s a t e l l i t e .  The thrus t  is assumed t o  
be l imited i n  magnitude and a c t s  f o r  a spec i f ic  f i n i t e  in te rva l  
of t i m e ,  and the  satel l i te  is assumed t o  be i n  the form of a 
material point o f  variable m a s s .  

equations of motion are separable. 
i n  t he  solut ion f o r  the  simplified problem is carr ied out. 

The functi,onal is  deri$ed on which is based tlie switch- 

I t  is  shown t h a t  f o r  certain assumptions, the satell3tels 
A n  estimate of the  e r r o r  

Statement of  t he  Problem 

1. The problem of the  repeated passage of  a s a t e l l i t e  over a given point 

on the  terrestrial  surface is discusseq. A ro ta t ion  is car r ied  out by a force 

normal.to the plane of the oscuiating orb i t ,  which is  assumed t o  be n e a r  

c i rcular .  

from considerations of an accurate passage over a given point'. 

passagefr i s  understood the  minimum angle between the  radius  vectors  of t he  point 

and the satellite. A functional is i n i t i a l l y  derived f o r  a central  f i e l d  and 

then f o r  a noncentral f i e l d ;  t he  gravi ta t ional  f i e l d  of the ea r th  is taken in to  

account with an accuracy up t o  the  first harmonic. 

L3* 

The t i m e s  of switching on'and switching off  the  t h r u s t  are determined 

By "accuracy of 

9 

t @  

The calculat ions show t h a t  neglect of t he  v a r i a b i l i t y  o f  t he  satellite's 

mass.causes an e r r o r  in'determining the posit ion of t he  o r b i t ' s  plane as large 

as several degrees, which is objectionable. 

* Numbers i n  t h e  margin indicate  pagination i n  the  foreign texl;. 
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A n  algorithm f o r  solving t h e  problem reduces t o  the followipg. The 

satel l i te ' s  spa t i a l  equations of motion are solved; In t h e  computational pro- 

cess a l l  t he  var iables  of  the ac t ive  t ra jec tory  a t  any t i m e  are known. Taking 

them as t h e  i n i t i a l  conditions of the  sa te l l i t e ' s  free-fl ight t ra jectory,  it is 

possible t o  derive its parameters from which the  corresponding functional can 

be formulated. The la t te r  depends, i n  <he f i n a l  analysis, on t h e  parameters of 

. the  active t ra jec tory  and on the  parameters of t he  free-f l ight  t ra jectory.  Its 

rezeroing takes place only under the  conditions of the  existence of  a solut4on 

of the  encounter problem. A t  t h i s  t i m e ,  t h e  t rans i t ion  of active f l i g h t  t o  

free f l i g h t  takes  place, i.e., t h rus t  cut-off occurs. The t i m e  of rezeroing 

t h e  functional should be determined extremely accurately. The t r a j ec to r i e s  of 

a s a t e l l i t e ' s  free motion are known f o r  a central  f ie ld ,  but f o r  t h e  case of a 

noncentral f ie ld ,  r e l a t ive ly  simple ana ly t ic  expressions are derived which are 

brought i n t o  the corresponding functional. An estimate is given i n  t h i s  paper 

of the  e r r o r  of these expressions which corresponds t o  the  assumed model of the  

gravi ta t ional  f i e ld .  Such an approach t o  the  solution of t he  problem permitted 

simplifying as much as possible the algorithm f o r  rotat ing the  o r b i t ' s  plane and 

simplifying t o  a minimum the  expenditures of machine t i m e  f o r  carrying out a l l  

t he  numerical operations. I 

~ 

The motion of t he  object around the  center of m a s s  w a s  not taken in to  

account i n  the  present work, and, the  e r r o r s  introduced by t h e  i n i t i a l  data and 

the  instrumental e r ro r s  (both determined and accidental)  of t he  on-board and 

ground-based control system w e r e  not considered. 

In Appendix 3, the  kystems of equations are presented according t o  which 

the  computation of  t he  algorithm f o r  rotat ing the  o r b i t ' s  plane i n  a noncentral 

f i e l d  is carr ied out. For comparison, t he  control algorithm i n  a central  f i e l d  

is given i n  Appendix 1. 

The ju s t i f i ca t ion  for replacing the complete system of equations of motion 

of the'  sa te l l i te  by the  simplified set with t h e  corresponding l imi ta t ions  which 
t 

occur i n  a given problem is given i n  Appendix 2. 

The fact t h a t  t he  derived algorithm can be reproduced on an on-board corn- L5 
puter which operates i n  real t i m e  is of  s ignif icant  value. 

c 

I 9  
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2. The equations of spa t ia l  motion af a s a t e l l i t e  i n  osculating variables 

a re  described i n  a well-known manner. One can, fo r  example, transform them t o  

the following equivalent form C 1 ,  21. 

where it i s  assumed tha t  

1) = d/dv is the Gector of the perturbing accelerations, 

v is the t rue  anomal;y, 

k . a re  the prozections of the t ransfer  vector k onto the o rb i t a l  
- 

kr, kv, z 
axes directed along the  radius vector, along the perpendicular 

b 

t o  it i n  the osculating plane i n  the  directEon of motion, and 

along the  perpendicular t o  the plane, 9 

where - 
j is the vector of the perturbing accelerations, 

* 
( 2 . 2 )  

I 

n is the ea r th l s  gravitational constant, 

y = l/r is the inverse of the radius vector, 

p is the o r b i t l s  parameter, e 

W is the angle determining the posit ion of the l i n e  of apsides, and 

R is  the longitude of the ascending node. 

The,variable v, a s  is w e l l  known, is associated with the t i m e  t by the  
I .  following equation 

3 



In t h i s  case, when the  s a t e l l i t e  i s  taken t o  be a material point of vari- 

able mass, the t ransfer  vector can be writ ten i n  t h e  form 

where . 
k 
- 

is the i n i t i a l  (a t  7 E 0)  tr&isfer; 
0 

B is the  coefficient which takes  into account the var ia t ion i n  mass, 

. 

-t of? ton 

7 

t and t are the t i m e s  of switching on and switching of f  the thrust ,  

respectively. 
on o f f  

We note t h a t  equations 1 and 2 i n  (2.1) represent the motion o f  a s a t e l l i t e  i n  

the plane of the osculating o rb i t  and equations 3 t o  5 represent the  posit ion 

of t h i s  plane i n  space. 

the system (2.1) is separable i n  the  case where k 

In the case of motion i n  a central f i e l d  of a t t r ac t ion  

kv = 0; the values-of p r 
and y a re  known f o r  e l l i p t i c  motion L7 

where 

e is the  eecentricihrof the e l l i p t i c  o rb i t '  and 

.v corresponds t o  the  o r b i t ' s  t i m e  of perigess passage. 
P 

3 .  L e t  the satell i te (S) move i n  a central  f i e ld ,  and a t  some specified 

time its posit ion over a specif ic .point  on the  terrestrial surface (P) is known, 



d 
I 

and it is  required tha t  during its subsequent return, it again pass over t h i s  

point on the  t e r r e s t r i a l  surface., For t h i s  we apply the  t ransfer  k whose 

t i m e s  of switching on and switching off  are determined by the re la t ion  a(2.5); 
the  s a t e l l i t e  is considered t o  be a material point of variable mass (during 

z' 

operation of the propulsion). 

therefore, we attempt t o  formulate an algorithm f o r  finding the  quant i t ies  T~~ 

and 7 

Such a problem does not have an analyt ic  solution; 

for simp1ici;ty we consider the o rb i t  t o  be circular.  o f f i  

We consider Figure 1, on which it is i l l u s t r a t e d  tha t :  

S, P is the posit ion of the  s a t e l l i t e  and the selected point on the 

t e r r e s t r i a l  surface a t  the  current instarit of time; 

B is the point of intersect ion of S and P; 

is the l a t i t ude  of the  point P, a constant quantity; 'p, 
xp, Xs,XB are the  longitude of the points P, S, and B, respectively; 

i is  the angle of inczination of ' the  plane of the  i n i t i a l  o rb i t ;  1 
i is the current angle  of incl inat ion of t he  'orbital  plane, and 

Q,, Q are the  ang le s  of r igh t  ascension f o r  the i n i t i a l  and current o rb i t a l  L8 
planes, respectively. 

i 

Figure 1. Geometry of the motion. 

5 '  
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. From consideration of the spherical  right-angle t r iangle  ABD, the following 

re la t ions  hold : 
0 

(2.8) 

where 

AB is the longitude of the point B, assumed t o  be the instant  of encounter, 

and Auy corresponds to  the arc CB along the  orb i t .  

Knowledge of the quan$ity Au i n  the  cas,e o f  the  problem of a central  f i e l d  

uniquely determines the value of the argument Av for the  free-fl ight t ra jec tory  

(which is proportional t o  the t i m e  of prediction A t  ), thus determining the 

instant of the  encounter, since 

Y 

Y 

Y 

U r V + W ,  

and w I const after the cut-off for motion i n  a .central f ie ld .  

the solution. 

t o  .ge t  r i d  of  

and perform a 

4. The equations which determine the  posit ion of the plane of the osculating 

o rb i t  i n  (2.1) possess the  inadequacy tha t  a t  i = 0 there appears a s ingular i ty  i n  

In  addition, it is more convenient w&en calculating 6n a computer 

as much of the  trigonometric functions as possible. We use c2l 

replacemen: of variables: 
c 

, ' J  

as a result of t h i s  the  system of equations assumes a form sui table  not only f o r  

analysis but also forAcomputations. W e  note immediately t h a t  

(2.10) 

6 
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W e  pbtain i n  advance a series of  useful equations. It follows from 

spherical  trigonometry and the  Eqs. (2.7) and (2.8) t h a t  

where 
I 1  V,, are the  l a t i t u d e  and longitude, respectivt?lj., 

R, u, i are the  angles which ,determine t h e  posi t ion of the satell i te i n  the  

s y s t e m  of coordinates associated withithe o r b i t a l  plane. Combining 

(2.9) and (2.111, we obtain 

(2.12) 

From (2.12) and (2.13) 

4 

By analogy with (2.15) we have 
'I b 

L10 

(2.16) 

= s i n  cp is the  specif ied l a t i t u d e  of t he  point P. '15 0 

5. From consideration of Figure 1, it is possible t o  derive equations.for 

t he  functional of the  th rus t  cu t -o f f ' i n  a central f i e ld .  A t  t he  switching on 

of the. th rus t ,  t he  posi t ion of 'the satell i te (S)  is determined a t  each current 

t i m e  as a r e su l t  of solving the system of equations. With t h e  help of the  

r e l a t ions  (2.7) and (2.81, taking in to  account t h e  f a c t  t h a t  'after t h e  cut-off 

w . =  const., we derive the  size of the prediction of Av and the  longitude.. \ of  
Y 

1. Av 'is the value of A v  when the  functional' is rezeroed. 
Y 



the  point oftencounter B. The posit ion of t he  point P a t  each t i m e  is also 

known ( t h i s  would be the  current posit ion of the point B); it is determined 

from the  following expression: 

where 

(2.17 

V is the angular velocity of the s a t e l l i t e  and 

Xp = Xo at  v = 0. 

It is completely obvious tha t  i n  order t o  have an encounter, it is necessary 

0 

t h a t  the  points P and S pass through the  point B a t  ;the very same time, and t h i s  

indicates t ha t  t he  following fu$ctional should be equal t o  zero a t  the  current 

time 
h 

(2.18) 

- 0  
The central  angle A between the  radius vectors of the  points  S(rs and 

- 0  
Y 

P(r i s  determined i n  the following m a n n e r  

In scalar form the Eq. (2.19) is 
8 b 

6 .  In Appendix 1, tbe satellitels system of equations of motion is given 

along with the  control algorithp. 

It  is known tha t  when an instantaneous impulse is applied,\ the corresponding 

thrus t  switches on a t  v = 2 7~ (i.e,, past -2 
2 2 

u n t i l  passing the  encounter point) .  

Therefore,, as a first approximafion f o r  the switch-one t i m e  of the thrus t  we 
s e l e c t  t h i s  value t (it correspogds t o  v 4 3 n). Upon rezeroing the 

on1 on1 z 

8 
. 



functional (2.18) th rus t  cut off  takes place when v = v which corresponds 

t o  time. t 

f i e l d  possesses well-known symmetry, it is natural  t o  se lec t  t h e  time of th rus t  

switch-on i n  the second approximation according , to the following scheme. 

O f f l '  . Since the  process o f  rotat ing the o rb i t a l  plane i n  a central  off1 

' 

t 
Let the  impulse P = pffl k d7 be a known quantity; it is derived at the 

0 .  Z 
t i m e  of the reeeroing of, -&e function'al (2.18). 

equally from the point v - v 
On1 

on t i m e  of the propulsion based pn t h e  second approximation. 

W e  dis%rib&e, t h i s  impulse 

and select t h i s  as t.he c r i te r ion  f o r  the swiich- 

Then it is obvious tha t  
t '  

from which we derive, taking (2.4) i n to  account, 

or, solving equation (2.21) with respect to A t ,  we obtain 

. .  

. 
* -  1 - 0  - -  

Taking in to  account the fact that * e  

_-  - 
Avon r v A t ,  

0 

w e  obtain the  algorithm for switching on i n  the  second approximation 

V = V  
. on2 on - Avon, 1 

i.e., 

.. . 

(2.21 1 

(2.22) 



W e  note tha t  i n  the case of a constant thrust ,  when B t 0, we,obtain 

t 

which can be derived d i rec t ly  from (2.21). , 

It follows from (2.24) tha t  
. .  . .. 

I '  

and since the  thrus t  is constant, 

where it is evident t h a t  v '  - V + ~ v ~ ~ '  ,. , 0 - n ~ .  ' 0  onl 

o r  Ll3 

(2.26) 

Having obtained the  value of v from Eq. (2.23') o r  from E q .  (2.261, the cal- 

culation is repeated again u n t i l  the  rezeroing of the functional (2.18). 

machine t i m e  expended i n  the calculation of the  act'ive section is not g r e a t  

(it does not exceed N 5 minutes). 

on2 
The 

The r e su l t s  of the calculation, even based on the  simplified Eq. (2.261, 
I 

give a fue l  saving of -30% and more f o r  cer ta in  conditions of f l i gh t .  

t h a t  the t i m e  of active f l i g h t  simultaneously .decrease's upon the  calculation of 

the  second approximation. 

W e  note 

10 



Algorithm f o r  Rotating the Orbital Plane 
i n  a Noncentral Field 

7. The gravitational f i e l d  of the eaf th  is ear th  is taken with an accuraay 

of the first term of the expansion 
. .  . . ... ~ . . . .  .. -. . , .. . _. . . . 

. .. 
' 

, .  . .v = -++,.&i 11' . .  ( i . ~ : i ' . s i 2 y j ]  ; . , '. 

. .  

where . ,  

R,, 4.37815*IQ6b, . 

E = 0.001623. 
* -  

Prescribing the gravit>tional f i e l d '  of the ear th  with high accuracy does 

not have prac t ica l  meaning ?s fa* a s  the set-up of the problem is concerned. 

We attempt t o  apply the  scheme outlined above t o  derive an hgorithm f o r  rotat ing 

the o rb i t a l  plane i n  a noncentral f i e l d  f o r  the problem of the  motion of  a 

s a t e l l i t e  i n  a noncentral f ie ld .  

a 

As is w e l l  known: 

* 
Taking into account (3.2) and replacing the variables i n  ( 2 . 9 )  instead of 

(2.1), we obtain %he following system of equations 

L14 

where here as earlier it is possible t o  write instead of the  last  equation 

11 



2 -2 
V =  1 4 - x  - &  0 

on the bas i s  of t he  existence of the integral  (2.10). 43 

8. The system (3.3) together with the control system solves the proposed 

However, t o  derive the functional.of cut-off i n  a noncentral 
I 

problem exactly. 

f ie ld ,  it is  scarcely convenient, since usually the  equations of a s a t e l l i t e  i n  

a specif ic  interval  of t i m e  of the  motion can be l inearized relative t o  some 

reference orbi t .  Moreover, it 'is w e l l  known tha t  i f  one gives a specif ic  motion 

(i.e., precession) of the o rb i t a l  plane with a given 

equations have essent ia l ly  the s a m e  form. 

then the  l inearized 3' 
Under the  conditions of  the proposed 

problem, people usually take 
. - .  - .  

e 

(3.4) 
* I  

with high accuracy. The physical meaning of such a l inear izat ion consists i n  

the f ac t  t ha t  t he  equations of motion o f  a satell i te can be considered i n  the , 

first approximation to  be independent of its motion i n  the osculating plane and 

the motion of the osculating plane i t s e l f .  However, such i inear izat ion is 

conveniently carr ied out i n  other variables but is not applicable f o r  the vari- 

Based on the idea i tself  f o r  se t t ing  up the problem, we would l i k e  t o  have 

a t  any t i m e  the  analyt ic  solution (3.31, only i n  t h i s  case we w i l l  be able t o  

use effect ively our prediction functional. 

Two s i tua t ions  can arise: when the  reference o rb i t  is c i rcu lar  and when 

the  reference o rb i t  is e l l i p t i c a l ;  i n  the Latter case the  equations are somewhat 

more complicated. 

For realist ic l imitat ions 

where 

y corresponds t o  the  unperturbed motion of the s a t e l l i t e ,  and 

6y is the  deviation from t h i s  motion upon a perturbation of the  t ra jec tory  
0 .  

B 

i n  the case of a noncentral gravitational f ie ld .  

12 
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One can separate an independent subsystem (see Appendix 2 )  from the  system 

(3.3): 
I -q = .. I 

i 
i 

where 

.P 

If the  a l t i t ude  of'$he c i rcu lar  o rb i t  above the  ear th ' s  surface is -130 km, 

is the parameter of the  unperturbed orb i t .  
0 

then the  l imitat ions (3.5) correspond to  I6yImax E 10.5 km. 

,We note tha t  t h e  al ior i thm'for  switching on the  propulsion i n  a noncentral 

f i e l d  remains the  s a m e  as i n . a  central  f i e l d  (see Section 61, since i n  practice 
.. ..- 

where' according t o  Appendix 2 

holds f o r  c i rcu lar  orb i t s ,  P y e: 1.' 
0 0  

9. Based on the  concept of se t t ing  up the problem, it is necessary f o r  u s  

t o  know the satell i tets motion a t  any t i m e  after t h m s t  cut-off, when the 

s a t e l l i t e  is moving only under the e f fec t  o f ' t h e  gravitational f i e l d  of the 

earth. This reduces t o  the  solution of the  following nonlipear system of 

equations: - 

'1 
1 (3 .9)  

where 

El = const. 

13 



P) 

The reference o rb i t  is taken t o  be circular.  

L e t  t h e  i n i t i a l  conditions for (3.9) have t h  
. .  

followin form: . 
a 

These expressions are derived continuously as a re su l t  of the solution of the  

algorithm. 

W e  perform the following obvious transformations: 
- 

1 
3 4 4 2 3  # 

where y = 28 y y y f o r  y3 f 0; i f  y3 E 0, then we obtain a t r i v i a l  case. 

follows from the  last expresSion t h a t  

It  

- =  1 (3.11) 

and the  variables are separated, giving 

from which 

W e  determine the constant C: 

we g e t  

. I  

I b 

Substi tuting (3.12) i n to  the three-equation system (3.91, we obtain 

14 



or, taking into account the first equation of (3.9) 

The variables 

a quadrature :. 

are separatedtin thle last equation, ana the  solution reduces t o  
8 

W e  note tha t  i n  the plane of the  phase variables y y the  e q r e s s i o n  (3.13) 1 2  
represents an e l l i p s e  with first-order accuracy up to  the terms E 

discarding terms i n  the  expansion of a lower order of magnitude r e l a t ive  t o  

Actually, 1. 

o r  

from which the  equation of the e l l i p s e  w i l l  have the  following 

where 

When El. I 0 and a E b, the expression (3.15) is converted into 

a circle with a radius 

(3.15) 

form: 

the equation of 

I 

._ . . -  



I 

In order not to  calculate the constant C, we rewrite (3.14) in  the form 

W e  expand the integrand of the expression into a Maclaurin series i n  the small 

parameter E 2 
to the order E,, inclusively 1 

where 

W e  integrate the first two terms in  Eq. (3.17)': 

.. 

Upon integrating the following expression - _ - "  . -  

we make the following replacement of variables: 

16 



Then we write instead of (3.19) 

(3.21) 

. .  . .  . 

One can show tha t  - 

17 



f r Q m  which 

I - -  
i.e., Eq. ( 3 . 2 3 )  is va l id  i n  t h e . r e s t r i c t e d  intecval  

. 1 5 3 with an 

accuracy of the order of O(E1). 

10. We attempt t o  f ind  a simpler form of solution than the  one obtained 

i n  the preceding section. 

W e  expand the  integrand i n  Eq. (3.16) i n  t h e  following manner: 

W e  emand the  denominator of 5: . - - _  

taking in to  account t he  symbols abo-ve, we obtain 
i 

-..e- . . - .  - . . 

We expand t h e  last  bracket i n  (3.24) in to  a se r i e s  and obtain 

18 
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where 

If one w r i t e s  down the  following approximate equal i ty  

then according t o  (3 .25 )  it is correct  with an accuracy rn, where 

According t o  Eq. (3.16), we obtain an estimate f o r  the  in tegra l  

W e  introduce the following symbols: 

Integrating the r igh t  pa r t  of t he  last  equat.ion, we obtain -- 

R 
A V  =A OIzcSin 

K, A 

o r  

b 

Furthermore, it is  evident t h a t  

. 

, L23 

(3 .28 )  



It follows from (3.28) t h a t  when Av = 0, Y1 = Yl0, but from (3.29) 

If the  expressions f o r  A and IC are expanded, then we obtain the  ident i ty :  
. .  . .  0 

11. W e  solve the  system (3.9) by another method. For t h i s  purpose, we 

apply t h e  functional method of Newton. W e  have 

where 

W e  introduce the  functional which i s , t h e  distance t o  a desired point i n  the  

functional space y (VI:  ' 1  

where 

. .  3 o  
:.. .. 

A V = V - V  
0' 

v 

The approach of  the  functional I t o  zero upon fiilfillment of the i n i t i a l  

1 1 

i s ' t h e  coordinate corresponding t o  the  current t i m e .  
0 

' 
% 

conditions denotes the tendency of y (v) t o  the desired solukion y *(VI. ' L24 
8 

As i n  any method of successive approximation, it is important t o  choose 

successfully the  approximation y (O) (v).  , W e  cpoose t h i s  solution i n  %i form 

s i m i l a r  t o  (3.28) : 
1 

(3.33) 

e 
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where 

We note t h a t  i n  comparison with the p>eceding section we have here 

M,=- ' A  3 

Y 

W e  represent t he  succeeding approximation i n  t h e  form 

Furthermore, based on a well-known procedure, we select from among a l l  the 

variations the following: 



W e  introduce the  function T(v) : 

Then 

I I . . .. 
and we obtain instead of (3.35 ) 

and so, according t o  (3.31) we obtain I 

.. . .. . . . .  . .. 
I '  . * (3.37) 

2 t he  last equation is correct t o  an accuracy of+, 

W e  determinerthe right-hand s ide  of Eq. ~ ( 3 . 3 6 )  
1 

22 
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And so 

The er ror  f o r  the same variables is 

ll The maximum value of v - v = - from which 
0 2' 

If we choose h = I, then already as a r e su l t  of ' the first i t e r a t ion  

2 The order of magnitude of the accuracry of the solution ( - E  

the  first approximation agrees with tha t  obtained i n  Section I O  with the 

Eq. (3.26) and amounts t o  - 1 x 10 . 
) with respect t o  1 

-6 

- Such agreement is explained by the f a c t , t h a t  y is a slowly varying 
3 

quantity (y = cos i). Therefore, t he  first approximation t o  the solution, taken 

as Y3 = Y30' already gives a suf f ic ien t ly  accurate solutio'n: It  is w e l l  known 

tha t  f o r  a l l  iterative methods 

the  first point ( i n  functional 

nakural expansion i n  the  small 

is less successful. 

12. The discussion above 

it is important to ,specify suff ic ient ly .accurately 

space). In t h i s  connection it is'clear why t h e '  127 

parameter E which'was presented i n  Section 9, 1' 

concerning an estimate of the first approximation 
2 

shows t h a t '  i ts e r ro r  does -not exceed a quantity - 0(g1) 
not be-admitted in to  the  calculatjon, since the  problem itself is set up with an 

El . This e r ro r  should 

23 



ackuracy not exceeding the  quantity E 

can be wri t ten i n  the  following form: 

And so, a solution of t h e  system (3.9) 1' 

* *  

I 

where 

0 2  2 M, = * 

Upon introducing the  equations f o r  tqe cut-off functional i n  a noncentral 

f ie ld ,  complications appear which are connected with the  fact t h a t  i n  finding 

the prediction t i m e  it is now impossible t o  use a single-yalued re la t ion  between 

Au and A v  since now w = const. 
Y Y' 

If we use the  derived solution (3.41), then we 'can establ ish t h i s  connection, 

using the re la t ion  (2.141, which w i l l  now have the  following form: 

Q 

are the  current values of yl, y , y , whichl are calculated L28 where Y 1 0 9  Y20, Y30 2 3  I 

a t  the s a m e  t i m e  on the t ra jec tory  

Since 

then we obtain instead of (3.43) 

(3.43) 
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from which 

The complete s y s t e m  of equations f o r  the algorithm f o r  rotat ing the  o r b i t a l  

plane i n  a noncentral f i e l d  i s  presented i n  Appendix 3. 

W e  note t h a t  when &, = 0, t h i s  system of equations can serve as an algorikhm 

f o r  ro ta t ion  o f  the  o rb i t a l  plane i n  a central  f i e ld .  

In Appendix 3.1 t H e  expression f o r  the propulsion cut-off functional i s  

writ ten i n  a different  form than i n  Appendix 1.1, which appears t o  be more 

acceptable here. 

13. The system of equations i n  Appendix 3.1 is the  simplest and most 

convenient i n  prac t ica l  applications;  i n  addition, it solves with suf f ic ien t  

accuracy the  problem posed. 
L29 

An estimate of t h i s  accuracy was made above. 

The la rges t  e r ro r  which one could call systematiclar ises  f o r  the re la t ion  

I 

t e f ( v ) .  (3.45) 

W e  now est imate . this  error .  The inaccuracy i n  t h e  knowledge of (3.45) is 

expressed by t h e  errors upon rezeroing the functional of the expression 10 i n  

Appendix 3 1, 

the  values of 

system, whose 

Earl ier ,  

where a l l  the  quant i t ies  are considered a s a r g u e n t s  of v, and 

hp are calculated on the bas is  of t he  expression 8 of t he  same 

e r ro r s  a r e  charac te r i s t ic .of  (3445) and vice versa. 

we wrote t h a t  
I '. 

W e  take, as usual, 

where 

(3.47) 

P and y w e r e  determined above. 
0 0 
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a 

We f ind  the logarithmic derivatives i n  (3.M) 

furthermore, the  derivatives of  the  Eq. (3.48) ' a t  t h e  point t is 0 

Now, one can wri te  t he  l inear ized equation f o r  (3.46) 

@ L 

Evidently, 

(3.49) 

L30 

(3-501 

' Taking in to  account Appendix 2.2 and Appendix 2.8, we obtain the  followfkng 

estimate: 

. -  From the. equation 

it follows tha t  t h e  error i n  l inear iza t ion  is 

Assuming t h a t  the  

(3.53) 

0 .  

-. 
1 .  

(3.54) , 

t i m e  of f l i g h t  corresponds to  v s T/2, we obtain 

(3-55) 
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This quantity corresponds to  an 'error  a t  the  surface o f  the ear th  of  - 3 km. 

As was indicated above, a l l  the remaining er rors  are l e s s  than the  one 

derived here. 

solution of t h e  equations of motion with such information. 

c a  be reduced i f  one knows more accurately the parameters o f  t he  o rb i t  a t  the  

instant  control begins, which i n  its turn implies a requirement f o r  a more 

accurate description of the equations. 

Therefore, there i s  no sense i n  searching f o r  a more accurate 

The err& of 3 km 

* 

I O  

-_ 
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Appendix 1. 

Combining the series of equations presented i h  the first section, one can L3L 
describe the  algorithm f o r  rotat ing the o rb i t a l  plane i n  a central  f i e l d  i n  the  

following form: 4% 

2a 



Appendix 2. 

We consider the  conditions under which it is  possible to  separate the  system L32 

(3.3) in to  two independent p a r t s  with an accuracy of the  order o f -  el2* 
2 

i 

The system (App. 2.1) d i f fens  from (3.3) i n  the  f a c t  t h a t  i n  it kZ I 0, 

W e  assume t h a t  i n  accordance with the  idea'of the problem being considered. 

the  deviation of the satellidte frbm the unperturbed o rb i t  satisfies the  condi- 

t i o n  _ _  
4 

'6 

where 
. .  

.. 
(App. 2..2) 

y corresponds t o  t h e  unperturbed motion. 
0 

Taking in to  account (App. 2.21, we obtain 

2 from wh'ch we g e t  with an accuracy of the  order of N P, . T- 



It is obvious tha t  i f  the quantity 'Py var ies  l i t t l e  i n  the  specified t i m e  L33 
interval  and one can neglect i ts variations, then Eqs. 4, 5, and 6 can be solved 

independently of the  remaining equations (App. 2.1). 

To estimate these terms, we integrate  E 4 . j  ( 3 )  i n  (App. 2-11 

W e  denote by the index ~ 1 1 ~ 1  the  first approximation 

We make the following remarks with regard t o  the last  inequal ;y . 
1. 

the o rb i t  P 

In  every case, f o r  an actual  t ra jectory of the motion the  parameter of 
I '  

is always large$ than the  average radius of theiear th  R 
0 .  0' 

i.e., 

Po > R o o  

Then n 

In its turn, I 



o r  

where r 

than the  average radius  of t he  ear th  according t o  the  idea of 'the problem. 

Final ly  we obtain, 

i s  the radius  vector of the unperturbed o rb i t ,  which is alyays larger 
0 ?4 

2, W e  note that;  based on the  conditions of the  problem, 

, .4a ./: 2 ace + $h 4 a ' 

. I  

t h i s  follows, f o r  example, from Eq. (2.10). 

It is completely evident t ha t  

from which . .  

a 

W e  f i nd ' t he  extreme of t h i s  equation 

Thus, 

4 

3.  The expression I 1 + F, - %,2*1 already takes in to  account terms of 

O(&'). The integrat ion range should a t  the  maximum not exceed rr/2 according 'to 

Taking in to  account the  remarks made above, we obtain instead of (App. 2 . 5 )  



. s  
,* , 

2 '  
Since there  is no sense' taking in to  account t he  terms - E i n  t he  problem, then L35 

(App. 2.8) 

.$e 

and the  e r r o r  allowed.in t h i s  case does not exceed 

W e  turn t o  equation (App. 214) 

Under the conditions of our problem 

In Eq. 5 of  (App. 2.1) we consider t h e  following term: 

'. 2 4  

from which we obtain 

where 

instead of  Eq. 5 

f o r  c i r cu la r  o r b i t s  

32 
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Appendix 3 .  

The equations of motion i n  the case of the  ro ta t ion  of t h e  o r b i t a l  plane L36 
i n  a noncentral f i e l d  have the  following form. 

.& 

. 

e 

. . .  

. . '  
, .  ! 

. 'I 4 4 j  = sin% = ConSt, . *  

. &,= ("ye 1 € =CO& . 
. - -  

~ -. a . -  - 

E = 0,00t623 I 

4 
'be= z, V 

r - is the  radius  of the  c i rcu lar  refLrence orb i t .  

33 
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In the  system (App. 3.1) Eq.( 11) can be taken as the functional according t o  

The value of v = v 
' 

L37 
i 

which t h e  propulsion cut-off takes place. 

obtained upon rezeroing of the  equation 

is cut-off 

and the value of t he  argument is taken equal t o  v + Av i.e., a t  the  assumed 

t i m e  of passage over the  point P. In  such a form, t h e  s y s t e m  (App. 3.1) is 

not su i tab le  f o r  calculation, s ince ' t he  values of the  quant i t ies  must be taken 

a t  t h e  predicted t i m e  v + Av 

variables y 

Eqs. (71, (91, and (11) of the  system (App. 3.1). , , 

Y' 

For t h i s  we use t h e  ana ly t ic  expressions f o r  t he  
Y' 

and y obtained above ,in (3.30), which we subs t i tu te  in to  
1' y29 . 3  

H e r e ,  it is necessary t o  recall t h a t  y is t h e  i n i t i a l  value corresponding t o  
30 

t h e  current value of y calculated d i r ec t ly  from Eq. (3) of the  system 

(App. 3..l); therefore, t he  index IrOtr w i l l  be dropped from here on. 
3' 

Instead of Eq. ( 9 )  we have the  following: a 

t 

Eq. (11) f o r  the  cut-off functional now has t h e  following form (see App. 3.2): L38 

In  a l l  th ree  of t h e  l a s t ' r e l a t i o n s  (3, 4, and 5) one should subs t i tu te  t he  

quantity A v  A v  instead of Av, which is found from Eq. (10) of t h e  system 

(App. 3.1)- 
Y 

To f i n d  the functional, it is necessary t o  know h;r, $For which it is neces- 

sary t o  integrate  (App. 3.3). To simplify t h e  calculat ions w e  expand t h e  right- 

hand s ide of  t h i s  equation i n  piwers of e 1: , 

34 

P 



If as 'before one r e s t r i c t s  the terms i n  e 
then we obtain 

to, the first order of magnitude, 1 9 

Having integrated t h i s  equation, we obtain 

o r  

> .  

Having taken account of these considerations, we, obtain the  folhwing algorithm 

f o r  the rotat ion of the o rb i t a l  p h n e  i n  a noncentral f i e ld :  

- 
e' . 
40 

5, 
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I t = I * d ,  ' .  
. .  

I 

.... 7, 

9, 
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